Neuronal differentiation and synapse formation of PC12 and embryonic stem cells on interdigitated microelectrode arrays: contact structures for neuron-to-electrode signal transmission (NEST).

نویسندگان

  • Erhard Bieberich
  • Guiseppi-Elie Anthony
چکیده

The development of neuron-microelectrode interfaces (neurochips) is highly desirable for the non-invasive recording of the cellular response to neuroactive drugs as well as the electrical stimulation of nervous tissue by implantable electrodes. A prerequisite for neuron-to-electrode signal transmission (NEST) is the formation of synapse-like contacts between the neuronal cell and the conductive surface of a microelectrode array. We attempted synapse formation by neuronal differentiation of rat pheochromocytoma cells (PC12) and blastocyst-derived murine embryonic stem cells (ES-J1) on interdigitated microelectrode arrays that were made of gold (Au), platinum (Pt), or indium tin oxide (ITO). PC12 or ES cells were in vitro differentiated by incubation with nerve growth factor (NGF) and forskolin, or by serum deprivation and treatment with basic fibroblast growth factor (FGF-2), respectively. On top of ITO electrodes, the neuronal cells extended extremely long processes that terminated in pili-like contact structures, which is typical for growth cone formation. ES cells differentiated into neurons as verified by immunofluorescence staining of MAP-2 and developed synapse-like junctions with the ITO electrode surface as indicated by synaptophysin staining. Differentiated PC12 and ES cells showed bona fide morphological characteristics of synaptic growth cones that were unprecedented in tissue culture. Cones formed by PC12 cells could be stimulated with KCI and carbachol as shown by uptake of FM1-43, a fluorescent marker for synaptic vesicle formation. In contrast to Electrical Cell Impedance Spectroscopy (ECIS) recordings, AC impedance spectrometry with differentiated PC12 cells settled on interdigitated microelectrode arrays revealed lower AC impedance than that with undifferentiated cells, indicating that the complex impedance is dependent on ion fluxes at the neuron-to-electrode contact surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Evaluation of effect of chick embryonic notochord on neural induction of mouse embryonic stem cells

Introduction: The aim of this study was evaluate the ability of notochord to induce neural induction and/or differentiation of mouse embryonic stem cell to neuron and motor neuron, respectively. Methods: In order to produce embryoid bodies, ES cells line Royan B1 were grown in suspension in the absence of LIF for 4 days. EBs were divided into 4 groups. EBs in group 1 & 2 were further cultur...

متن کامل

القای فنوتیپ عصبی در سلول‌های بنیادی رویانی توسط داروی دپرنیل

Introduction & Objective:: Previous studies have shown that ES cells could be induced to differentiate into neurons and gelia in vitro. Induction protocols are based on culture in the presence of an inducer such as RA. In this study, the effect of deprenyl on the differentiation of embryonic stem cells (ES) cells to neuron-like cells was investigated. Deprenyl is a type B monoamine oxidase...

متن کامل

Differential gene expression by lithium chloride induction of adipose-derived stem cells into neural phenotype cells

Objective(s): Adipose-derived stem cells (ADSCs), with suitable and easy access, are multipotential cells that have the ability for differentiation into other mesodermal and transdifferentiate into neural phenotype cells. In this study, Lithium chloride (LiCl) was used for in vitro transdifferentiation of rat ADSCs into neuron-like cells (NLCs).<stro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biosensors & bioelectronics

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 2004